Math2050b HW6

- 1. Suppose I = (a, a + 1). If a = 0, then it is trivial. If $a \in \mathbb{Z}$, suppose (m, n) = 1, then (m an, n) = 1. It reduces back to the case of a = 0. If $a \in \mathbb{Q}$, say $a = \frac{\alpha}{\beta}$ with $\alpha, \beta \in \mathbb{Z}$. Then it is easy to see that B_n in this case has at most n elements. As rational number is dense, and each B_n is finite. the case when $a \notin \mathbb{Q}$ follows.
- 2. Let I = (a, b) be the interval with positive length. Suppose f is bounded on I. That is $\exists M > 0$ such that for all $x \in I$, $|f(x)| \leq M$. Let $\frac{m}{n} \in I$, then $f(x) = n \leq M$. Hence, for sufficiently large $k, B_k = \emptyset$. But $\bigcup_{n=1}^{\infty} B_n = \mathbb{Q} \cap I$ which is impossible.
- 3. Suppose $\lim_{x\to x_0} f(x)$ does not exist. By cauchy criterion, there is $\epsilon_0 > 0$ such that for all $\delta > 0$, we can find $x, y \in V_{\delta}(x_0) \setminus \{x_0\}$ such that

$$|f(x) - f(y)| \ge \epsilon_0$$

We can find a sequence x_n, y_n by considering $\delta = \frac{1}{n}$ so that for all n,

$$|f(x_n) - f(y_n)| \ge \epsilon_0 > 0.$$

If f is bounded, by BW, we can extract subsequence such that $f(x_{n_k})$ and $f(y_{n_k})$ is convergent with distinct limit due to the above inequality.